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A distinct approach for calculations of Dzyaloshinskii-Moriya interactions in molecules and crystals is
proposed. It is based on the exact perturbation expansion of the total energy of weak ferromagnets in the
canting angle with the only assumption of local Hubbard-type interactions. This scheme leads to a simple and
transparent analytical expression for the Dzyaloshinskii-Moriya vector with a natural separation into spin and
orbital contributions. The main problem was transferred to calculations of effective tight-binding parameters in
the properly chosen basis including the spin-orbit coupling. Test calculations for La2CuO4 give the value of the
canting angle in agreement with experimental data.
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The Dzyaloshinskii-Moriya interactions �DMI� �Refs. 1
and 2� were introduced in the theory of weak ferromagnetism
to explain the canting of the magnetic moments of some
antiferromagnets �such as �-Fe2O3, MnCO3, CoCO3, and
others3�. It was shown later that the DMI are of crucial im-
portance for many others classes of magnetic systems, such
as spin glasses,4 molecular magnets,5–7 multiferroics
systems,8 magnetic surfaces and clusters on the surfaces,9–12

and Jahn-Teller systems.13 In a sense, DMI is the simplest
example of relativistic magnetic interactions, since it appears
already in the first order in the spin-orbit �SO� coupling,
whereas the magnetic anisotropy is at least of the second
order.2 On the other hand, the DMI vanish for systems with
inversion symmetry, which explains their special relevance
for low symmetric cases such as molecules, clusters, sur-
faces, and disorder systems.

The microscopic origin of the DMI was clarified by
Moriya for model systems.2 For that he used the idea of
Anderson14 about the superexchange interaction mechanism.
However, the original formulation of the Dzyaloshinskii-
Moriya interaction is not suitable for quantitative calcula-
tions of the DMI parameters for specific compounds based
on real electronic structures. Numerous attempts of more
convenient and general formulations have been made
afterward.15–21

Yildirim et al.15 have developed a perturbative approach
in the spin-orbit coupling for Mott insulators within the
Hubbard-type model. A similar approach has been developed
in Ref. 21 within the local-density approximation plus U
�LDA+U� method. In Refs. 16–18 the magnetic force
theorem22 has been applied but only for spin rotations. The
authors of Ref. 23 presented a computationally efficient
method to determine the strength of the DMI from the spin-
orbit induced corrections to the energy of long-ranged spin
spirals. A general first-principles approach for the DMI was
suggested in Ref. 19 in a similar but fully relativistic formal-
ism, that takes into account both spin and orbital contribu-
tions. This is probably the best possible way if one starts to
calculate the DMI from the true noncollinear ground-state
magnetic structure.

The results of previous theoretical investigations15 have

demonstrated that in the real transition-metal compounds
there are a lot of different microscopic mechanisms for the
anisotropic exchange interactions. For instance, to take into
account the metal-oxygen hybridization one should consider
high-order hopping processes between metal and oxygen or-
bitals. It strongly complicates the formulation and solution of
the problem. In this Rapid Communication, we return to the
original Anderson’s idea14 about the superexchange interac-
tion in the Wannier function basis. We use the main advan-
tage of such an approach which is that all the important
hybridization effects can be captured by constructing the
Wannier function. As we will show it simplifies dramatically
the formalism without any essential loss of accuracy.

Since the canting angles are normally quite small it allows
us to proceed with the corresponding collinear structures and
use advantage of first-order perturbation treatment for the
magnetic torque. The application of the magnetic force theo-
rem to equilibrium configurations, involves additional as-
sumptions such as neglecting of vertex corrections.24 First-
order variation in the total energy near the collinear states
leads to an expression for the DMI formally exact in the
many-body sense.

We start with the general Hamiltonian of interacting elec-
trons in a crystal,

Ĥ = Ĥt + Ĥu = �
12

c1
+t12c2 +

1

2 �
1234

c1
+c2

+U1234c3c4, �1�

where 1= �i1 ,m1 ,�1� is the set of site �i1�, orbital �m1�, and
spin ��1� quantum numbers, and t12 are hopping integrals
that contain the spin-orbit coupling. These transfer couplings
can be found by the Wannier parametrization of the first-
principles band structure with the spin-orbit coupling.25 In
this case the real-space site-centered spinor Wannier function
can be written as

Wn�r� = �
T�

�n�T���r − T� , �2�

where T is a lattice translation vector, ���r−T� are the site-
centered spinor atomic-like orbitals �in our case they were
linear muffin-tin orbitals �LMTO��, and �n�T are expansion
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coefficients of the Wannier functions in terms of the corre-
sponding LMTO orbitals.

We will take into account only the local Hubbard-type

interactions, keeping in Ĥu only terms with i1= i2= i3= i4.
This assumption corresponds to the LDA+U Hamiltonian26

that is also a starting point for the LDA plus dynamical
mean-field theory �DMFT�.27,28 It is crucially important for

the later consideration that the interaction term Ĥu is sup-
posed to be rotationally invariant.

Let us start with a collinear magnetic configuration �e.g.,
the Neel antiferromagnetic state�, which is close to the real
ground state �weak ferromagnet�, but does not coincide with
it due to the Dzyaloshinskii-Moriya interactions. The phe-
nomenological Hamiltonian of the DMI is given by

HDM = �
ij

D� ij�e�i � e� j� , �3�

where e�i is a unit vector in the direction of the ith site mag-
netic moment and D� ij is the Dzyaloshinskii-Moriya vector.
We analyze the magnetic configuration that is slightly devi-
ated from the collinear state,

e�i = �ie�0 + �	
� i � �ie�0� , �4�

where �i= �1, e�0 is the unit vector along the vector of an-
tiferromagnetism and 	
� i are the vectors of small angular
rotations.

Substituting Eq. �4� into Eq. �3� one finds for the variation
in the magnetic energy,

	E = �
ij

D� ij�	
� i − 	
� j� . �5�

Now we should calculate the same variation for the mi-
croscopic Hamiltonian �1�. Similar to the procedure used in
Ref. 24 to derive exchange interactions for the LDA
+DMFT approach, we consider the effect of the local rota-
tions

R̂i = ei	
� iJ
�̂

i �6�

on the total energy; here J�̂i=L�̂ i+S�̂ i is the total moment op-

erator, L�̂ i and S�̂ i are the orbital and spin moments, respec-

tively. We would like to stress that the operator R̂i acts on ith
Wannier state. In the supplementary materials29 we demon-

strate that the rotation of the orbital part of J�̂i in Wannier
function basis results in independent rotations of the atomic
orbital moments.

The interaction part of the Hamiltonian Ĥu is rotationally
invariant and is not changed under this transformation, op-

posite to the hopping part Ĥt,

	Ĥt = �
ij

ci
+�	R̂i

+t̂i j + t̂i j	R̂j�cj = − i�
ij

ci
+�	
� iJ�̂it̂ij − t̂i jJ�̂ j	
� j�cj

= −
i

2�
ij

ci
+�	
� i − 	
� j��J�̂it̂ij + t̂i jJ�̂ j�cj −

i

2�
ij

ci
+�	
� i + 	
� j�

��J�̂it̂ij − t̂i jJ�̂ j�cj . �7�

Assuming that J�̂i=J�̂ j =J�̂ the change in the total energy takes
the form

	E = −
i

2�
ij

�	
� i − 	
� j�Trm,��ci
+�J�̂, t̂i j�+cj�

−
i

2�
ij

�	
� i + 	
� j�Trm,��ci
+�J�̂, t̂i j�−cj� , �8�

where Trm,� is a trace over orbital �m� and spin ��� quantum
numbers.

The first term in the right-hand side of Eq. �8� is respon-
sible for relative deviations of the magnetic moments on sites
i and j �DMI� whereas the second one is related with the
rotation of the magnetic axis as a whole �magnetic aniso-
tropy�. Assuming that 	
� i=	
� is independent on site index
one finds the following expression for the magnetic aniso-
tropy torque:

	E

	
�
= − i�

ij

Trm,��ci
+�J�̂, t̂i j�−cj� . �9�

In contrast with the previous results17,18 expression �9� con-
tains both spin and orbital contributions. Application of this
expression to real systems will be considered elsewhere.
Here we will focus on the DMI.

Comparing Eq. �8� with Eq. �5� one finds

D� ij = −
i

2
Trm,��ci

+�J�̂, t̂i j�+cj� = −
i

2
Trm,�Nji�J�̂, t̂i j�+, �10�

where Nji= �ci
+cj�=− 1

��−

Ef Im Gji�E�dE is the occupation ma-

trix and Ĝ is the Green function, EF is the Fermi energy.
Assuming that the occupation matrix is known exactly the
expression for DMI, Eq. �10�, is exact due to the Hellmann-
Feynman theorem. Note that the occupation matrix is calcu-
lated in the corresponding collinear states, which strictly
speaking can be done self-consistently only within con-
strained calculations.30 Using the decomposition of the total

moment J�̂ into orbital and spin moments, we have a natural
representation of the Dzyaloshinskii-Moriya vector, Eq. �10�,
as a sum of the orbital and spin contributions, which are
related with the rotations in orbital and spin space, respec-
tively.

To test the developed method we consider weak ferro-
magnetism phenomena which result from DMI. The problem
of the theoretical description of weak ferromagnetism in an-
tiferromagnets can be solved by calculating the canting
angle. As an example of the system demonstrating weak fer-
romagnetism we have chosen La2CuO4 in the low-
temperature orthorhombic phase presented in Fig. 1. For this
system the Wannier functions can be qualitatively analyzed
by using a one-band Hubbard model with the spin-orbit cou-
pling proposed in Refs. 31 and 32,

H = �
ij��

ci�
+ �t	�� + i�� ij�� ���cj� + U�

i

ni↑ni↓. �11�

Here t is a nearest-neighbor hopping parameter and the vec-
tor �� ij depends on the tilting pattern of oxygen octahedra
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surrounding the copper atom. Substituting Eq. �11� into Eq.
�10� we obtain

D� ij = �� ij Tr� Nji. �12�

Therefore the symmetry of the Dzyaloshinskii-Moriya vector
is fully described by the vector �� ij. If there is the inversion
center between copper atoms then �� ij =0 and DMI vanishes.

Using the definitions introduced in Refs. 31 and 32
we obtain ��12=��14= 1

2 ��1−�2 ,�1+�2 ,0� and ��13=��15

= 1
2 ��1−�2 ,−�1−�2 ,0�. It is easy to show that the total

Dzyaloshinskii-Moriya vector � j=2
5 D� 1j has only nonzero x

component. It means that the canting exists if the magnetic
moments are in yz plane. This fully agrees with the results of
previous works.31,33,34

Unfortunately, the performed microscopic analysis is only
qualitative. The most straightforward way to obtain a reliable
numerical estimation of the canting angle would be to per-
form relativistic first-principles calculations for the corre-
sponding noncollinear magnetic structure. However, this is a
very challenging computational problem. Since in the case of
3d-metal compounds the spin-orbit coupling is small one
should run many thousands of iterations to relax the mag-
netic structure.35 On the other hand, to solve the weak ferro-
magnetism problem we only need to know the magnitude
and the direction of the Dzyaloshinskii-Moriya vector. It can
be done by using the developed method for the fixed collin-
ear magnetic configuration. Such an approach seems to be
preferable since it requires much less computational efforts.

We have performed the LDA+U+SO calculations for the
collinear antiferromagnetic structure where the magnetic mo-
ments were fixed along z axis. The computational details are
the same as in Ref. 21. The obtained results are presented in
Table I.

In order to calculate the Dzyaloshinskii-Moriya interac-
tion, Eq. �10�, one needs to define the occupation matrix Nji

and the kinetic part t̂i j of the Hamiltonian in a Wannier func-
tion basis. The construction of a reliable Wannier basis can
be performed in different schemes.36–39 As a first attempt we
will use the simplest choice related with orthogonalized

minimal basis LMTO scheme36,38 including the spin-orbital
coupling. Note that, since the trace in Eq. �10� is only over
orbital indices and not on the site ones, the resulting D� ij is
Wannier-gauge dependent. The Wannier functions are nor-
mally constructed using a truncated basis, therefore it will be
important to investigate in the future a sensitivity of the re-
sults with respect to a choice of the Wannier states.

Since in our investigation we used the LMTO-atomic-
sphere approximation �LMTO-ASA� �Ref. 36� it was natural
to associate Nji and t̂i j with the occupation matrix and kinetic
energy of the 3d states of the copper atoms. We consider
such an approximation as a reasonable one since the mag-
netic moments in La2CuO4 are due to the 3d states of
copper.40 Another fact supported our approximation is good
agreement between the isotropic exchange interaction calcu-
lated by using the Green’s-function method in the framework
of LMTO-ASA and the model kinetic exchange estimated as

Jij =
4tij

2

U .41

The DMI parameters between neighboring copper atoms
calculated via Eq. �10� are presented in Table II. One can see
that the orbital contribution to the Dzyaloshinskii-Moriya in-
teraction is one order of magnitude larger than the spin one.
The obtained magnetic torque is directed along x axis. This
agrees with the results of our microscopic analysis. Summa-
rizing all the vectors we can calculate the canting angle of
the magnetic moment which is given by

	� =
	�

j

D� 1j	
�

j

J1j

= 0.005, �13�

where the total exchange interaction � jJ1j was taken to be
58.3 meV.21 The obtained value of the canting angle is in a
reasonable agreement with the experimental estimate of
0.003.40

To conclude, we have proposed a distinct method for cal-
culation of the Dzyaloshinskii-Moriya interaction parameters
which, conceptually, is much simpler than approaches known

TABLE I. Calculated magnitude �in �B� and orientation of the
spin and orbital copper moments in La2CuO4.

Atom Spin moment Orbital moment

1 0.65� �0,0 ,−1� 0.04� �0,0 ,−1�
2 0.65� �0,0 ,1� 0.04� �0,0 ,1�

TABLE II. Different contributions to the Dzyaloshinskii-Moriya
vectors �in meV�.

R� 1j D� 1j
spin D� 1j

orb

�1,2� �−0.005;−0.006;0� �−0.07;−0.03;0�
�1,3� �−0.005;0.006;0� �−0.07;0.03;0�
�1,4� �−0.005;−0.006;0� �−0.07;−0.03;0�
�1,5� �−0.005;0.006;0� �−0.07;0.03;0�

FIG. 1. �Color online� Magnetic structures of La2CuO4. Black
and gray arrows denote noncollinear and fixed collinear ground
states, respectively. Gray �dark� and yellow �light� small circles
represent oxygen atoms that are above and below the copper oxide
plane, respectively.
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before. This method represents, in a natural way, the
Dzyaloshinskii-Moriya vector as a sum of the spin and or-
bital contributions which may give a deeper insight into mi-
croscopic mechanisms of the DMI for a given system. In our
approach, the crucial point is the construction of a reliable
tight-binding parametrization of the Hamiltonian with the
spin-orbit interaction taken into account. We have performed
the corresponding calculations for the weak ferromagnet
La2CuO4, and the results look quite promising.
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